Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(3): e2302128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922434

RESUMO

Peripheral nerve injuries (PNI) can lead to mitochondrial dysfunction and energy depletion within the affected microenvironment. The objective is to investigate the potential of transplanting mitochondria to reshape the neural regeneration microenvironment. High-purity functional mitochondria with an intact structure are extracted from human umbilical cord-derived mesenchymal stem cells (hUCMSCs) using the Dounce homogenization combined with ultracentrifugation. Results show that when hUCMSC-derived mitochondria (hUCMSC-Mitos) are cocultured with Schwann cells (SCs), they promote the proliferation, migration, and respiratory capacity of SCs. Acellular nerve allografts (ANAs) have shown promise in nerve regeneration, however, their therapeutic effect is not satisfactory enough. The incorporation of hUCMSC-Mitos within ANAs has the potential to remodel the regenerative microenvironment. This approach demonstrates satisfactory outcomes in terms of tissue regeneration and functional recovery. Particularly, the use of metabolomics and bioenergetic profiling is used for the first time to analyze the energy metabolism microenvironment after PNI. This remodeling occurs through the enhancement of the tricarboxylic acid cycle and the regulation of associated metabolites, resulting in increased energy synthesis. Overall, the hUCMSC-Mito-loaded ANAs exhibit high functionality to promote nerve regeneration, providing a novel regenerative strategy based on improving energy metabolism for neural repair.


Assuntos
Células-Tronco Mesenquimais , Tecido Nervoso , Traumatismos dos Nervos Periféricos , Humanos , Nervo Isquiático , Células de Schwann , Traumatismos dos Nervos Periféricos/terapia , Matriz Extracelular , Regeneração Nervosa/fisiologia
2.
Adv Healthc Mater ; 12(32): e2301859, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750601

RESUMO

Peripheral nerve injury represents one of the most common types of traumatic damage, severely impairing motor and sensory functions, and posttraumatic nerve regeneration remains a major challenge. Electrical cues are critical bioactive factors that promote nerve regrowth, and bioartificial scaffolds incorporating conductive materials to enhance the endogenous electrical field have been demonstrated to be effective. The utilization of fully biodegradable scaffolds can eliminate material residues, and circumvent the need for secondary retrieval procedures. Here, a fully bioresorbable and conductive nerve scaffold integrating N-type silicon (Si) membranes is proposed, which can deliver both structural guidance and electrical cues for the repair of nerve defects. The entire scaffold is fully biodegradable, and the introduction of N-type Si can significantly promote the proliferation and production of neurotrophic factors of Schwann cells and enhance the calcium activity of dorsal root ganglion (DRG) neurons. The conductive scaffolds enable accelerated nerve regeneration and motor functional recovery in rodents with sciatic nerve transection injuries. This work sheds light on the advancement of bioresorbable and electrically active materials to achieve desirable neural interfaces and improved therapeutic outcomes, offering essential strategies for regenerative medicine.


Assuntos
Traumatismos dos Nervos Periféricos , Silício , Humanos , Implantes Absorvíveis , Neurônios , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Gânglios Espinais , Nervo Isquiático/fisiologia , Tecidos Suporte/química
3.
Chin J Traumatol ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37311687

RESUMO

PURPOSE: Ischemia and hypoxia are the main factors limiting limb replantation and transplantation. Static cold storage (SCS), a common preservation method for tissues and organs, can only prolong limb ischemia time to 4-6 h. The normothermic machine perfusion (NMP) is a promising method for the preservation of tissues and organs, which can extend the preservation time in vitro by providing continuous oxygen and nutrients. This study aimed to evaluate the difference in the efficacy of the 2 limb preservation methods. METHODS: The 6 forelimbs from beagle dogs were divided into 2 groups. In the SCS group (n = 3), the limbs were preserved in a sterile refrigerator at 4 °C for 24 h, and in the NMP group (n = 3), the perfusate prepared with autologous blood was used for the oxygenated machine perfusion at physiological temperature for 24 h, and the solution was changed every 6 h. The effects of limb storage were evaluated by weight gain, perfusate biochemical analysis, enzyme-linked immunosorbent assay (ELISA), and histological analysis. All statistical analyses and graphs were performed using GraphPad Prism 9.0 one-way or two-way analysis of variance (ANOVA). The p value of less than 0.05 was considered to indicate statistical significance. RESULTS: In the NMP group, the weight gained percentage was 11.72% ± 4.06%; the hypoxia-inducible factor-1α (HIF-1α) contents showed no significant changes; the shape of muscle fibers was normal; the gap between muscle fibers slightly increased, showing the intercellular distance of (30.19 ± 2.83) µm; and the vascular α-smooth muscle actin (α-SMA) contents were lower than those in the normal blood vessels. The creatine kinase level in the perfusate of the NMP group increased from the beginning of perfusion, decreased after each perfusate change, and remained stable at the end of perfusion showing a peak level of 4097.6 U/L. The lactate dehydrogenase level of the NMP group increased near the end of perfusion and reached the peak level of 374.4 U/L. In the SCS group, the percentage of weight gain was 0.18% ± 0.10%, and the contents of hypoxia-inducible factor-1α increased gradually and reached the maximum level of (164.85 ± 20.75) pg/mL at the end of the experiment. The muscle fibers lost their normal shape, and the gap between muscle fibers increased showing an intercellular distance of (41.66 ± 5.38) µm. The contents of vascular α-SMA were much lower in the SCS group as compared to normal blood vessels. CONCLUSIONS: NMP caused lesser muscle damage and contained more vascular α-SMA as compared to SCS. This study demonstrated that NMP of the amputated limb with perfusate solution based on autologous blood could maintain the physiological activities of the limb for at least 24 h.

4.
Bioact Mater ; 26: 370-386, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36942011

RESUMO

Autologous nerve grafting serves is considered the gold standard treatment for peripheral nerve defects; however, limited availability and donor area destruction restrict its widespread clinical application. Although the performance of allogeneic decellularized nerve implants has been explored, challenges such as insufficient human donors have been a major drawback to its clinical use. Tissue-engineered neural regeneration materials have been developed over the years, and researchers have explored strategies to mimic the peripheral neural microenvironment during the design of nerve catheter grafts, namely the extracellular matrix (ECM), which includes mechanical, physical, and biochemical signals that support nerve regeneration. In this study, polycaprolactone/silk fibroin (PCL/SF)-aligned electrospun material was modified with ECM derived from human umbilical cord mesenchymal stem cells (hUMSCs), and a dual-bionic nerve regeneration material was successfully fabricated. The results indicated that the developed biomimetic material had excellent biological properties, providing sufficient anchorage for Schwann cells and subsequent axon regeneration and angiogenesis processes. Moreover, the dual-bionic material exerted a similar effect to that of autologous nerve transplantation in bridging peripheral nerve defects in rats. In conclusion, this study provides a new concept for designing neural regeneration materials, and the prepared dual-bionic repair materials have excellent auxiliary regenerative ability and further preclinical testing is warranted to evaluate its clinical application potential.

5.
Glia ; 71(3): 758-774, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36484493

RESUMO

Following peripheral nerve injury (PNI), Wallerian degeneration (WD) in the distal stump can generate a microenvironment favorable for nerve regeneration. Brief low-frequency electrical stimulation (ES) is an effective treatment for PNI, but the mechanism underlying its effect on WD remains unclear. Therefore, we hypothesized that ES could enhance nerve regeneration by accelerating WD. To verify this hypothesis, we used a rat model of sciatic nerve transection and provided ES at the distal stump of the injured nerve. The injured nerve was then evaluated after 1, 4, 7, 14 and 21 days post injury (dpi). The results showed that ES significantly promoted the degeneration and clearance of axons and myelin, and the dedifferentiation of Schwann cells. It upregulated the expression of BDNF and NGF and increased the number of monocytes and macrophages. Through transcriptome sequencing, we systematically investigated the effect of ES on the molecular processes involved in WD at 4 dpi. Evaluation of nerves bridged using silicone tubing after transection showed that ES accelerated early axonal and vascular regeneration while delaying gastrocnemius atrophy. These results demonstrate that ES promotes nerve regeneration by accelerating WD and upregulating the expression of neurotrophic factors.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Traumatismos dos Nervos Periféricos/metabolismo , Degeneração Walleriana/terapia , Degeneração Walleriana/patologia , Neuropatia Ciática/patologia , Nervo Isquiático/metabolismo , Células de Schwann/metabolismo , Axônios/metabolismo , Regeneração Nervosa/fisiologia , Estimulação Elétrica
6.
Stem Cell Res Ther ; 13(1): 3, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012663

RESUMO

BACKGROUND: Peripheral nerve injury (PNI) is one of the essential causes of physical disability with a high incidence rate. The traditional tissue engineering strategy, Top-Down strategy, has some limitations. A new tissue-engineered strategy, Bottom-Up strategy (tissue-engineered microtissue strategy), has emerged and made significant research progress in recent years. However, to the best of our knowledge, microtissues are rarely used in neural tissue engineering; thus, we intended to use microtissues to repair PNI. METHODS: We used a low-adhesion cell culture plate to construct adipose-derived mesenchymal stem cells (ASCs) into microtissues in vitro, explored the physicochemical properties and microtissues components, compared the expression of cytokines related to nerve regeneration between microtissues and the same amount of two-dimension (2D)-cultured cells, co-cultured directly microtissues with dorsal root ganglion (DRG) or Schwann cells (SCs) to observe the interaction between them using immunocytochemistry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA). We used grafts constructed by microtissues and polycaprolactone (PCL) nerve conduit to repair sciatic nerve defects in rats. RESULTS: The present study results indicated that compared with the same number of 2D-cultured cells, microtissue could secrete more nerve regeneration related cytokines to promote SCs proliferation and axons growth. Moreover, in the direct co-culture system of microtissue and DRG or SCs, axons of DRG grown in the direction of microtissue, and there seems to be a cytoplasmic exchange between SCs and ASCs around microtissue. Furthermore, microtissues could repair sciatic nerve defects in rat models more effectively than traditional 2D-cultured ASCs. CONCLUSION: Tissue-engineered microtissue is an effective strategy for stem cell culture and therapy in nerve tissue engineering.


Assuntos
Regeneração Nervosa , Engenharia Tecidual , Animais , Células Cultivadas , Regeneração Nervosa/fisiologia , Ratos , Células de Schwann , Nervo Isquiático , Células-Tronco , Engenharia Tecidual/métodos
7.
Tissue Eng Part B Rev ; 28(5): 1007-1021, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34641714

RESUMO

The involvement of cell-derived extracellular matrix (CDM) in assembling tissue engineering scaffolds has yielded significant results. CDM possesses excellent characteristics, such as ideal cellular microenvironment mimicry and good biocompatibility, which make it a popular research direction in the field of bionanomaterials. CDM has significant advantages as an expansion culture substrate for stem cells, including stabilization of phenotype, reversal of senescence, and guidance of specific differentiation. In addition, the applications of CDM-assembled tissue engineering scaffolds for disease simulation and tissue organ repair are comprehensively summarized; the focus is mainly on bone and cartilage repair, skin defect or wound healing, engineered blood vessels, peripheral nerves, and periodontal tissue repair. We consider CDM as a highly promising bionic biomaterial for tissue engineering applications and propose a vision for its comprehensive development. Impact statement Cell-derived extracellular matrix (CDM) has received continued attention on the field of tissue engineering because of its promising biological characteristics. CDM deposited in vitro is rich in protein fractions and contains a wealth of biological information that provides a suitable niche for the survival and activity of isolated cells. More importantly, the free-assembling feature of CDM allows it to participate in the assembly of tissue-engineered scaffolds, imparting bionic properties to regenerative scaffolds, and thus CDM-modified scaffolds are widely used in the reconstruction of bone and cartilage tissue, peripheral nerves, skin, and blood vessels. This article is dedicated to summarizing the important results achieved by CDM-modified tissue engineering scaffolds in tissue organ reconstruction, helping readers to understand the developments in this field in recent years.


Assuntos
Matriz Extracelular , Engenharia Tecidual , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo , Tecidos Suporte/química , Cartilagem , Materiais Biocompatíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...